Package: ROSE 0.0-4

ROSE: Random Over-Sampling Examples

Functions to deal with binary classification problems in the presence of imbalanced classes. Synthetic balanced samples are generated according to ROSE (Menardi and Torelli, 2013). Functions that implement more traditional remedies to the class imbalance are also provided, as well as different metrics to evaluate a learner accuracy. These are estimated by holdout, bootstrap or cross-validation methods.

Authors:Nicola Lunardon, Giovanna Menardi, Nicola Torelli

ROSE_0.0-4.tar.gz
ROSE_0.0-4.zip(r-4.5)ROSE_0.0-4.zip(r-4.4)ROSE_0.0-4.zip(r-4.3)
ROSE_0.0-4.tgz(r-4.5-any)ROSE_0.0-4.tgz(r-4.4-any)ROSE_0.0-4.tgz(r-4.3-any)
ROSE_0.0-4.tar.gz(r-4.5-noble)ROSE_0.0-4.tar.gz(r-4.4-noble)
ROSE_0.0-4.tgz(r-4.4-emscripten)ROSE_0.0-4.tgz(r-4.3-emscripten)
ROSE.pdf |ROSE.html
ROSE/json (API)

# Install 'ROSE' in R:
install.packages('ROSE', repos = c('https://nicolalunardon.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

6.94 score 4 stars 3 packages 1.6k scripts 15k downloads 131 mentions 5 exports 0 dependencies

Last updated 4 years agofrom:b0d750fcd4. Checks:4 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKApr 01 2025
R-4.5-winOKApr 01 2025
R-4.5-macOKApr 01 2025
R-4.5-linuxOKApr 01 2025
R-4.4-winNOTEApr 01 2025
R-4.4-macNOTEApr 01 2025
R-4.4-linuxNOTEApr 01 2025
R-4.3-winNOTEApr 01 2025
R-4.3-macNOTEApr 01 2025

Exports:accuracy.measovun.sampleroc.curveROSEROSE.eval

Dependencies: